A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems
نویسندگان
چکیده
We continue the development of the super-grid-scale model initiated in [T. Colonius, H. Ran, A super-grid-scale model for simulating compressible flow on unbounded domains, J. Comput. Phys. 182 (1) (2002) 191–212] and consider its application to linear hyperbolic systems. The super-grid-scale model consists of two parts: reduction of an unbounded to a bounded domain by a smooth coordinate transformation and a damping of those scales. For linear problems the super-grid scales are analogous to spurious numerical waves. We damp these waves by high-order undivided differences. We compute reflection coefficients for different orders of the damping and find that significant improvements are obtained when high-order damping is used. In numerical experiments with Maxwell’s equations, we show that when the damping is of high order, the error from the boundary condition converges at the order of the interior scheme. We also demonstrate that the new method achieves perfectly matched layer-like accuracy. When applied to linear hyperbolic systems the stability of the super-grid-scale method follows from its construction. This makes our method particularly suitable for problems for which perfectly matched layers are unstable. We present results for two such problems: elastic waves in anisotropic media and isotropic elastic waves in wave guides with traction-free surfaces. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
A General Perfectly Matched Layer Model for Hyperbolic-Parabolic Systems
This paper describes a very general absorbing layer model for hyperbolic-parabolic systems of partial differential equations. For linear systems with constant coefficients it is shown that the model possesses the perfect matching property, i.e., it is a perfectly matched layer (PML). The model is applied to two linear systems: a linear wave equation with a viscous damping term and the linearize...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملEffects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...
متن کاملA staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations.
A particle velocity-strain, finite-difference (FD) method with a perfectly matched layer (PML) absorbing boundary condition is developed for the simulation of elastic wave propagation in multidimensional heterogeneous poroelastic media. Instead of the widely used second-order differential equations, a first-order hyperbolic leap-frog system is obtained from Biot's equations. To achieve a high a...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009